General models in min-max continous location: Theory and solution techniques
نویسندگان
چکیده
منابع مشابه
Min-max-min Geometric Facility Location Problems
We propose algorithms for a special type of geometric facility location problem in which customers may choose not to use the facility. We minimize the maximum cost incurred by a customer, where the cost itself is a minimum between two costs, according to whether the facility is used or not. We therefore call this type of location problem a min-max-min geometric facility location problem. As a f...
متن کاملMax-Margin Min-Entropy Models
We propose a new family of latent variable models called max-margin min-entropy (m3e) models, which define a distribution over the output and the hidden variables conditioned on the input. Given an input, an m3e model predicts the output with the smallest corresponding Rényi entropy of generalized distribution. This is equivalent to minimizing a score that consists of two terms: (i) the negativ...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Min-Max payoffs in a two-player location game
We consider a two-player, sequential location game in d-dimensional Euclidean space with arbitrarily distributed consumer demand. The objective for each player is to select locations so as to maximize their market share—the mass of consumers in the vicinity of their chosen locations. At each stage, the two players (Leader and Follower) choose one location each from a feasible set in sequence. W...
متن کاملFaster min-max resource sharing in theory and practice
We consider the (block-angular) min-max resource sharing problem, which is defined as follows. Given finite sets R of resources and C of customers, a convex set Bc, called block, and a convex function gc : Bc → R+ for every c ∈ C, the task is to find bc ∈ Bc (c ∈ C) approximately attaining λ∗ := inf{maxr∈R ∑ c∈C(gc(bc))r | bc ∈ Bc(c ∈ C)}. As usual we assume that gc can be computed efficiently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 1996
ISSN: 0022-3239,1573-2878
DOI: 10.1007/bf02192640